Extensions 1→N→G→Q→1 with N=Dic13 and Q=C22

Direct product G=N×Q with N=Dic13 and Q=C22
dρLabelID
C22×Dic13208C2^2xDic13208,43

Semidirect products G=N:Q with N=Dic13 and Q=C22
extensionφ:Q→Out NdρLabelID
Dic131C22 = D4×D13φ: C22/C2C2 ⊆ Out Dic13524+Dic13:1C2^2208,39
Dic132C22 = C2×C13⋊D4φ: C22/C2C2 ⊆ Out Dic13104Dic13:2C2^2208,44
Dic133C22 = C2×C4×D13φ: trivial image104Dic13:3C2^2208,36

Non-split extensions G=N.Q with N=Dic13 and Q=C22
extensionφ:Q→Out NdρLabelID
Dic13.1C22 = C2×Dic26φ: C22/C2C2 ⊆ Out Dic13208Dic13.1C2^2208,35
Dic13.2C22 = D525C2φ: C22/C2C2 ⊆ Out Dic131042Dic13.2C2^2208,38
Dic13.3C22 = Q8×D13φ: C22/C2C2 ⊆ Out Dic131044-Dic13.3C2^2208,41
Dic13.4C22 = D13⋊C8φ: C22/C2C2 ⊆ Out Dic131044Dic13.4C2^2208,28
Dic13.5C22 = C52.C4φ: C22/C2C2 ⊆ Out Dic131044Dic13.5C2^2208,29
Dic13.6C22 = C2×C13⋊C8φ: C22/C2C2 ⊆ Out Dic13208Dic13.6C2^2208,32
Dic13.7C22 = C13⋊M4(2)φ: C22/C2C2 ⊆ Out Dic131044-Dic13.7C2^2208,33
Dic13.8C22 = D42D13φ: trivial image1044-Dic13.8C2^2208,40
Dic13.9C22 = D52⋊C2φ: trivial image1044+Dic13.9C2^2208,42

׿
×
𝔽